top of page
Men's Accessories

Syllabus and Schedule

April 26, 2022

Syllabus: Schedule

14:00 - 14:15

Introduction

  • The need for privacy and the need for data                             

  • Private Computation Models         

  • The Federated Model                       

  • Overview of privacy technologies 

  • Cross-silo vs. cross-device setting

  • Analytics vs. Learning

  • Variants of federated computing  

  • Limitations of Federated Computation

14:15 - 14:30

Technical Preliminaries

  • Definitions of privacy and security

  • Multi-party computation

  • Secure Aggregation

  • K-anonymity

  • Central and Local Differential Privacy

  • Event, Device and User privacy     

14:30 - 15:00

Federated Algorithms

  • Secure Multi-Party Computation (MPC) for secure aggregation             

  • DP frequency oracles and            
    histograms             

  • Analytics primitives: Sum, Mean,  
    Quantiles and Heavy Hitters     

  • Distributed Noise Generation

  • Sample and Threshold privacy

15:00 - 15:15

​

Practical Considerations

  • Case studies of federation in practice

  • Current federated systems

  • Practical challenges

  • Data Characteristics

  • Building a federated stack

15:15 - 15:25

Open Problems

  • Cross-user analytics

  • Complex structured data                   

  • Longitudinal privacy and data streams

  • Defense against security threats  

  • Real-time analytics                           

  • Proactive vs. reactive analytics      

  • Federated learning and beyond

15:25 - 15:30

Q&A

The audience can feel free to ask any questions they have!

bottom of page